332
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of cryogenic cooling effect in reaming Ti-6AL-4V alloy

&
Pages 970-978 | Received 20 Mar 2016, Accepted 10 Jun 2016, Published online: 05 Dec 2016
 

ABSTRACT

This research article is based mainly on the investigation of the effect of cryogenic machining, while reaming Titanium grade 5 alloy (Ti-6Al-4V) material. Cutting speed (Vc) and feed rate (f) are two input parameters at three different levels for a constant depth of the hole. The output parameters considered by using a cryogenic LN2 cooling compared to a conventional flood cooling are torque (Mt), thrust force (Ft), cutting temperature (T), quality of the hole (circularity and cylindricity), surface roughness (Ra) and chip morphology. The results show cryogenic liquid nitrogen (LN2) cooling resulting in 15–31% reduction in the cutting temperature, 23–57% reduction in the thrust force and 14–65% reduction in torque. Higher surface roughness, circularity (Cir) and cylindricity (Cyl) were observed in the cryogenic LN2 cooling condition. Furthermore, better chip breakability was observed in the cryogenic LN2 cooling condition. No drastic change in the microstructure was observed in both flood and cryogenic LN2 cooling. Increase in microhardness by 10–16% and 8–19% in cryogenic LN2 cooling over flood cooling was observed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.