431
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Combined effect of shot peening, subcritical austenitic nitriding, and cryo-treatment on surface modification of AISI 4140 steel

&
Pages 349-354 | Received 10 Jun 2016, Accepted 05 Jul 2016, Published online: 28 Nov 2016
 

ABSTRACT

Shot peening is a simple but effective severe plastic deformation process to synthesize ultrafine grains in micro- to nanometer range on metallic surfaces. In this work, shot peening on AISI 4140 steel specimens was done in a novel centrifugal air blast shot peening reactor with shot velocity of 5.8 m/s for 3 h. Characterization of the shot peened surface (XRD, micro-hardness, SEM, and TEM) showed that surface undergoes significant plastic deformation with marked increase in microstrain of lattice, dislocation density, and surface hardness. XRD profiles and TEM analysis confirmed formation of ultrafine grain structure in the nanometer range. These specimens were then subjected to austenitic nitriding at 610°C for 4 h followed by cryo-treatment at − 185°C for 32 h. Characterization of pre-shot peened nitrided and cryo-treated surfaces showed that there was marked improvement in surface hardness (from 695 to 797 HV0.05) and effective case depth (from 19 to 54 µm) in comparison with un-shot peened nitrided and cryo-treated specimens. It was demonstrated that presence of ultrafine grain structure and austenitic phase during nitriding plays synergetic role to improve content and diffusion kinetics of nitrogen in AISI 4140 steel surface.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.