930
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Joining of metal matrix composites using friction stir welding: a review

, &
Pages 123-146 | Received 09 Jun 2018, Accepted 18 Sep 2018, Published online: 13 Nov 2018
 

ABSTRACT

The application of fusion welding process is restricted to certain grades of alloys and materials. Solid-state joining process offers greater advantages over fusion welding process such as fumeless and effective joining, minimum or no preparation time, environment friendly, etc. One such solid-state joining process is friction stir welding (FSW), which uses a non-consumable rotating tool. This rotating tool joins the two faying surfaces of the workpiece by forging them. This joining technique successfully joins metals, alloys and metal matrix composite (MMC), which are considered as difficult to join using conventional processes. The present study is an endeavor to review a specific domain of FSW, i.e. joining of MMCs. The initial part of the study provides a detailed introduction about the FSW process, and along with it, an overview of the published literature related to FSW of alloys has been presented. The later part of the study pays specific attention to macrostructure, microstructure, joint properties and residual stresses in welded joints along with wearing of tool during welding of MMC. The observations of this study provide a basis for future research in the specified domain.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.