24
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

LASER AND ELECTRON BEAM PROCESSING OF AMORPHOUS SURFACE ALLOYS ON CONVENTIONAL CRYSTALLINE METALS

, , &
Pages 567-590 | Published online: 26 Apr 2007
 

ABSTRACT

During last fifteen years various superior surface characteristics including extremely high corrosion resistance and unique electrocatalytic activity have been found for novel melt-spun ribbon-shaped amorphous alloys. Preparation of those amorphous alloys as surface alloys covering bulk conventional crystalline metals has been eagerly awaited for the purpose of utilizing their superior surface characteristics. This is a review of efforts devoted to developing methods for processing amorphous surface alloys by instantaneous melting of a very restricted volume of the surface by irradiation with a CO2 laser or electron beam and subsequent self quenching by the cold bulk substrates. Processing of a wide area by these high energy density beams requires heating the previously amorphized phase, which is easily crystallized by heating. Consequently, high energy density beam processing is most difficult among various methods for preparation of thermodynamically metastable amorphous alloys. Nevertheless, various amorphous surface alloys have been successfully prepared. The materials consisting of the amorphous surface alloys and bulk crystalline metals are quite suitable for corrosion resistant materials and electrodes for electrolysis of aqueous solutions. A comparison of CO2 laser and electron beam processing showed the superiority of the latter to the former because of a significantly shorter processing time.

Additional information

Notes on contributors

N. Kumagai

Present address: Daiki Engineering Co. Ltd., Shintoyofuta, Kashiwa 277, Japan

H. Yoshioka

Present address: YKK Corporation, Machinery Department, Kurobe, Toyama 938, Japan

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.