428
Views
29
CrossRef citations to date
0
Altmetric
Original

Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival

, &
Pages 1409-1421 | Received 17 Mar 2005, Published online: 01 Jul 2009
 

Abstract

Defects in apoptotic pathways can promote cancer development and cause cancers to become resistant to chemotherapy. The cell adhesion and signaling molecule PECAM-1 has been shown to potently suppress apoptosis in a variety of cellular systems. PECAM-1 expression has been reported on a variety of human malignancies—especially hematopoietic and vascular cell cancers—but the significance of this expression has not been fully explored. The ability of PECAM-1 to inhibit apoptosis makes it an attractive candidate as a molecule that may promote cancer development and/or confer resistance to chemotherapeutic treatment. The exact mechanisms by which PECAM-1 mediates its cytoprotection have not been fully defined, but its anti-apoptotic effects have been shown to require both homophilic binding and intracellular signaling via its immunoreceptor tyrosine-based inhibitory motif (ITIM) domains. In this review, we will discuss the data regarding PECAM-1's anti-apoptotic effects and ways in which this cytoprotection may be clinically relevant to the development and/or treatment of hematologic malignancies that express this vascular cell-specific surface molecule.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.