324
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Atmospheric Chemistry of Toxic Contaminants. 5. Unsaturated Halogenated Aliphatics: Allyl Chloride, Chloroprene, Hexachlorocyclopentadiene, Vinylidene Chloride

Pages 182-189 | Accepted 25 Oct 1990, Published online: 06 Mar 2012
 

Abstract

Detailed mechanisms are outlined for the chemical reactions involved In the atmospheric removal of four unsaturated chlorinated aliphatic contaminants, allyl chloride, chloroprene, hexachlorocyclopentadiene and vlnylldene chloride. Rate constants estimated from structure-reactivity relationships Indicate rapid removal for all four compounds by reactions with OH (major), ozone, and NO3, with half-lives of 2-16 hrs for removal by reaction with OH. Reaction products of allyl chloride (formaldehyde, chloroacetaldehyde, peroxychloroacetyl nitrate) and vinylidene chloride (formaldehyde, phosgene, chloroacetyl chloride) are consistent with OH addition-Initiated pathways that include Cl atom elimination. The chlorine atoms produced In the OH reaction sequence react rapidly with all four unsaturated compounds, but these reactions are of negligible Importance for atmospheric removal of the four toxic contaminants studied. Analogous mechanisms are discussed for chloroprene (leading to formaldehyde, CH2 = CCICHO, and CICOCHO) and for hexachlorocyclopentadlene (leading to oxalyl chloride and CICOCCI2COCI).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.