1,546
Views
31
CrossRef citations to date
0
Altmetric
Control Technology

Control Technologies for Remediation of Contaminated Soil and Waste Deposits at Superf und Lead Battery Recycling Sites

, &
Pages 970-980 | Received 17 Mar 1992, Accepted 22 May 1992, Published online: 06 Mar 2012
 

Abstract

This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations were performed for the primary purpose of reclaiming lead from spent lead-acid batteries. Metallic lead and lead compounds are generally the principal contaminants of concern in soils and waste deposits (i.e., buried, piled, landfilled waste) at these sites. Other metals (e.g., cadmium, copper, arsenic, antimony, and selenium) are often present at LBRS, but usually at much lower concentrations than lead and often present below hazardous concentrations. This article is primarily based on experience gained from: (1) Superfund site investigation, removal, and remedial actions, and (2) development and demonstration of control technologies under the Superfund Innovative Technology Evaluation (SITE) Program. The primary remedial options for lead contaminated soils and waste deposits include: (1) no action, (2) off-site disposal, (3) containment, (4) immobilization, (5) separation with resource recovery, and (6) separation without resource recovery. In spite of the toxicity of lead at low concentrations, the relative immobility of lead and site-specific risk assessments can still result in the selection of no action or containment remedies. Solidification/stabilization of lead-contaminated soils has been implemented at three Superfund sites and is the selected remedy at several others. Separation technologies (e.g., screening, extraction) are attractive because, if successful, they actually remove the contaminant from the environmental media. Separation technologies also offer the possibility that a valuable product (e.g., lead, plastic, energy) can be recovered, but careful consideration of economic and technical factors are required. Compared to the implementation of containment and solidification I stabilization remedies, separation technologies tend to be relatively novel, complex, and costly.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.