117
Views
31
CrossRef citations to date
0
Altmetric
Technical Paper

Spatial Variation in Acidic Sulfate and Ammonia Concentrations within Metropolitan Philadelphia

, , &
Pages 442-452 | Published online: 05 Mar 2012
 

Abstract

Acidic sulfate concentrations were measured in metropolitan Philadelphia during the summers of 1992 and 1993, as part of a continuing effort to characterize particle concentrations in urban environments. Sampling was performed simultaneously at eight sites located within and around metropolitan Philadelphia. Sites were selected based on their population density and on their distance and direction from the city center. Air pollution sampling was conducted every other day during the summer of 1992 and every day during the summer of 1993. All samples were collected for 24-h periods beginning at 9 a.m. (EDT). All acidic sulfate and ammonia samples were collected using modified Harvard-EPA Annular Denuder Systems (HEADS).

In this paper, we examine the spatial variation in acidic sulfate and ammonia concentrations within the metropolitan Philadelphia area. We also identify factors that may influence their variation and develop models to predict their concentrations. Outdoor sulfate (SO4 2−) concentrations were uniform within metropolitan Philadelphia; however, aerosol strong acidity (H+) concentrations varied spatially. This variation generally was independent of wind direction, but was related to local factors, such as the NH3 concentration, population density, and distance from the center of the city. Physico-chemical models, which were developed using data collected during the summer of 1992, were excellent predictors of 24-h and mean summertime H+ concentrations measured during the summer of 1993. Models accounted for 78% of the variation in 24-h H+ levels. Results suggest that a single stationary ambient (SAM) monitor would be sufficient to estimate SO4 2− exposures for populations living in Philadelphia. For H+, however, multiple monitoring sites or models should be used to determine the outdoor H+ exposures of populations living in urban environments, although a single SAM site may provide an excellent index of H+ variation over time.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.