639
Views
5
CrossRef citations to date
0
Altmetric
Technical Paper

Mercury Emissions from a Hazardous Waste Incinerator Equipped with a State-of-the-Art Wet Scrubber

, &
Pages 730-736 | Published online: 05 Mar 2012
 

Abstract

Over a six-week period, eleven tests were performed at the U.S. EPA Incineration Research Facility (IRF) in Jefferson, Arkansas to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a Calvert Flux-Forcer/Condensation Scrubber pilot plant as the primary air pollution control system (APCS). Test variables were kiln temperature, ranging from 538 °C to 927 °C; waste feed chlorine content, ranging from 0% to 3.4%; and scrubber pressure drop, ranging from 8.2 kPa to 16.9 kPa. Mercury was among the six hazardous constituent trace metals fed to the IRF’s pilotscale rotary kiln incineration system as part of a synthetic waste feed. This paper focuses on the test results solely with respect to mercury.

As expected, mercury behaved as a very volatile metal throughout the tests; it was not detected in any kiln ash samples. Scrubber collection efficiency for mercury ranged from 67% to >99%, averaging 87%; this was somewhat lower than expected and may be attributable to low scrubber loadings.

The ability to collect and analyze representative scrubber water samples appears to have been affected by the waste feed chlorine content; detection of mercury at higher concentrations during high waste-chlorine-content tests is thought to be largely the result of the formation of mercuric chloride, a more water-soluble species, during those tests. As a result, no firm conclusions may be drawn regarding the true impact of waste feed chlorine content on mercury partitioning to the scrubber water. As expected, no significant relationship was observed between kiln exit-gas temperature and mercury partitioning, nor was there a significant relationship with scrubber pressure drop.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.