158
Views
19
CrossRef citations to date
0
Altmetric
Technical Paper

Determination of PM2.5 Sulfate and Nitrate with a PC-BOSS Designed for Routine Sampling for Semi-Volatile Particulate Matter

, &
Pages 69-75 | Published online: 27 Dec 2011
 

ABSTRACT

Ambient particles contain substantial quantities of material that can be lost from the particles during sample collection on a filter. These include ammonium nitrate and semi-volatile organic compounds. As a result, the concentrations of these species are often significantly in error for results obtained with a filter pack sampler. The accurate measurement of these semi-volatile fine particulate species is essential for a complete understanding of the possible causes of health effects associated with exposure to fine particles. Past organic compound diffusion denuder samplers developed by the authors (e.g., the Brigham Young University Organic Sampling System [BOSS]) are not amenable to routine field use because of the need to independently determine the gas-phase semi-volatile organic material efficiency of the denuder for each sample. This problem has been eliminated using a combined virtual impactor, particle-concentrator inlet to provide a concentrated stream of 0.1-2.5-μm particles. This is followed by a BOSS diffusion denuder and filter packs to collect particles, including any semi-volatile species lost from the particles during sampling. The samp ler (Particle Concentrator-Brigham Young University Organic Sampling System [PC-BOSS]) contains a post-denuder multifilter pack unit to allow for the routine collection of several sequential samples. The PC-BOSS can be used for the determination of both fine particulate nitrate and semi-volatile organic material without significant “positive” or “negative” sampling artifacts. Validation of the sampler for the determination of PM2.5 sulfate and nitrate based on comparison of results obtained at Riverside, CA with collocated PC-BOSS, annular denuder, and Chem Spec samplers indicates the PC-BOSS gives accurate results for these species with a precision of ±5-8%. An average of 33% of the PM2.5 nitrate was lost from the particles during sampling for both denuder and single filter samplers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.