259
Views
17
CrossRef citations to date
0
Altmetric
Technical Paper

Computer Simulations of Particle Deposition in the Developing Human Lung

&
Pages 1426-1432 | Published online: 27 Dec 2011
 

ABSTRACT

An age-dependent theoretical model has been developed to predict PM dosimetry in children's lungs. Computer codes have been written that describe the dimensions of individual airways and the geometry of branching airway networks within developing lungs. Breathing parameters have also been formulated as functions of subject age. Our computer simulations suggest that particle size, age, and activity level markedly affect deposition patterns of inhaled air pollutants. For example, the predicted lung deposition fraction is 38% in an adult but is nearly twice as high (73%) in a 7-month-old for 2-um particles inhaled during heavy breathing. Tracheobronchial (TB) and pulmonary (or alveolated airways, P) deposition patterns may also be calculated using the model. Due to different clearance processes in the TB and P airways (i.e., mucociliary transport and macrophage action, respectively), the determination of compartmental dose is important for PM risk assessment analyses. Furthermore, the results of such simulations may aid in the setting of regulatory standards for air pollutants, as the data provide a scientific basis for estimating dose delivered to a designated sensitive subpopulation (children).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.