1,278
Views
59
CrossRef citations to date
0
Altmetric
Technical Paper

Characterization of Emissions from Diffusion Flare Systems

Pages 1723-1733 | Published online: 27 Dec 2011
 

ABSTRACT

Emissions from flares typical of those found at oil-field battery sites in Alberta, Canada, were investigated to determine the degree to which the flared gases were burned and to characterize the products of combustion in the emissions. The study consisted of laboratory, pilot-scale, and field-scale investigations. Combustion of all hydrocarbon fuels in both laboratory and pilot-scale tests produced a complex variety of hydrocarbon products within the flame, primarily by pyrolytic reactions. Acetylene, eth-ylene, benzene, styrene, ethynyl benzene, and naphthalene were some of the major constituents produced by conversion of more than 10% of the methane within the flames. The majority of the hydrocarbons produced within the flames of pure gas fuels were effectively destroyed in the outer combustion zone, resulting in combustion efficiencies greater than 98% as measured in the emissions.

The addition of liquid hydrocarbon fuels or condensates to pure gas streams had the largest effect on impairing the ability of the resulting flame to destroy the pyrolytically produced hydrocarbons, as well as the original hydrocarbon fuels directed to the flare. Crosswinds were also found to reduce the combustion efficiency (CE) of the co-flowing gas/condensate flames by causing more unburned fuel and the pyrolytically produced hydrocarbons to escape into the emissions.

Flaring of solution gas at oil-field battery sites was found to burn with an efficiency of 62-82%, depending on either how much fuel was directed to flare or how much liquid hydrocarbon was in the knockout drum. Benzene, styrene, ethynyl benzene, ethynyl-methyl benzenes, toluene, xylenes, acenaphthalene, biphenyl, and fluorene were, in most cases, the most abundant compounds found in any of the emissions examined in the field flare testing. The emissions from sour solution gas flaring also contained reduced sulfur compounds and thiophenes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.