540
Views
70
CrossRef citations to date
0
Altmetric
Technical Paper

A Study of Gas-Phase Mercury Speciation Using Detailed Chemical Kinetics

, &
Pages 869-877 | Published online: 27 Dec 2011
 

ABSTRACT

Mercury speciation in combustion-generated flue gas was modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for the chlorination and oxidation of key flue-gas components, including elemental mercury (Hg0). Results indicated that the performance of the model is very sensitive to temperature. Starting with pure HCl, for lower reactor temperatures (less than ~630 °C), the model produced only trace amounts of atomic and molecular chlorine (Cl and Cl2), leading to a drastic underprediction of Hg chlorination compared with experimental data. For higher reactor temperatures, model predictions were in good accord with experimental data. For conditions that produce an excess of Cl and Cl2 relative to Hg, chlorination of Hg is determined by the competing influences of the initiation step, Hg + Cl = HgCl, and the Cl recombination reaction, 2Cl = Cl2. If the Cl recombination reaction is faster, Hg chlorination will eventually be dictated by the slower pathway Hg + Cl2= HgCl2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.