218
Views
4
CrossRef citations to date
0
Altmetric
Technical Paper

Air Intake Contamination by Building Exhausts: Tracer Gas Investigation of Atmospheric Dispersion Models in the Urban Environment

, &
Pages 160-166 | Published online: 27 Dec 2011
 

Abstract

The establishment of a safe distance between sources of pollution and air intakes is based on a complex exercise that should take into account several wind, physical, and topographical factors. To estimate the maximum concentrations of the pollutants as a function of the distance from the emission source, some heating, ventilation, and air conditioning (HVAC) system designers use the atmospheric dispersion models suggested by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Two of these models, the Halitsky and Wilson-Chui-Lamb models, have been developed and evaluated mainly with laboratory data. There have been relatively few evaluations with full-scale field data. The objective of this study, carried out on a building in downtown Montreal, Quebec, Canada, was to compare the measured concentrations of a tracer gas emitted by an exhaust stack with those predicted by these models. The results indicate that the Halitsky model gives lower than actual dilution, while the Wilson-Chui-Lamb model generally gives acceptable estimates, with occasional over-estimations of the dilution.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.