117
Views
6
CrossRef citations to date
0
Altmetric
Technical Paper

Evaluation of the RAMS Continuous Monitor for Determination of PM2.5 Mass Including Semi-Volatile Material in Philadelphia, PA

, , &
Pages 563-572 | Published online: 27 Dec 2011
 

Abstract

The real-time ambient mass sampler (RAMS) is a continuous monitor based on particle concentrator, denuder, drier, and tapered element oscillating microbalance (TEOM) monitor technology. It is designed to measure PM2.5 mass, including the semi-volatile species NH4NO3 and semi-volatile organic material, but not to measure PM2.5 water content. The performance of the RAMS in an urban environment with high humidity was evaluated during the July 1999 NARSTO-Northeast Oxidant and Particles Study (NEOPS) intensive study at the Baxter water treatment plant in Philadelphia, PA. The results obtained with the RAMS were compared to mass measurements made with a TEOM monitor and to constructed mass obtained with a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) sampler designed to determine the chemical composition of fine particles, including the semi-volatile species. An average of 28% of the fine particulate material present during the study was semi-volatile organic material lost from a filter during particle collection, and 1% was NH4NO3 that was also lost from the particles during sampling. The remaining mass was dominantly nonvolatile (NH4)2SO4 (31%) and organic material (37%), with minor amounts of soot, crustal material, and nonvolatile NH4NO3. Comparison of the RAMS and PC-BOSS results indicated that the RAMS correctly monitored for fine particulate mass, including the semi-volatile material. In contrast, the heated filter of the TEOM monitor did not measure the semi-volatile material. The comparison of the RAMS and PC-BOSS data had a precision of ±4.1 μg/m3 (±9.6%). The precision of the RAMS data was limited by the uncertainty in the blank correction for the reversible adsorption of water by the charcoal-impregnated cellulose sorbent filter of the RAMS monitor. The precision of the measurement of fine par-ticulate components by the PC-BOSS was ±6-8%.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.