1,510
Views
24
CrossRef citations to date
0
Altmetric
Technical Paper

Adsorption and Desorption Characteristics of Semiconductor Volatile Organic Compounds on the Thermal Swing Honeycomb Zeolite Concentrator

, , &
Pages 1384-1390 | Published online: 22 Feb 2012
 

Abstract

The use of a honeycomb zeolite concentrator and an oxidation process is one of the most popular methods demonstrated to control volatile organic compound (VOCs) emissions from waste gases in semiconductor manufacturing plants. This study attempts to characterize the performance of a concentrator in terms of the removal efficiencies of semiconductor VOCs (isopropyl alcohol [IPA], acetone, propylene glycol methyl ether [PGME], and propylene glycol monomethyl ether acetate [PGMEA]) under several parameters that govern the actual operations. Experimental results indicated that at inlet temperatures of under 40 °C and a relative humidity of under 80%, the removal efficiency of a zeolite concentrator can be maintained well over 90%. The optimal rotation speed of the concentrator is between 3 and 4.5 rph in this study. The optimal rotation speed increases with the VOCs inlet concentration. Furthermore, reducing the concentration ratio helps to increase the removal efficiency, but it also increases the incineration cost. With reference to competitive adsorption, PGMEA and PGME are more easily adsorbed on a zeolite concentrator than are IPA and acetone because of their high boiling points and molecular weights.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.