237
Views
3
CrossRef citations to date
0
Altmetric
Technical Paper

Pozzolanic Reactivity of the Synthetic Slag from Municipal Solid Waste Incinerator Cyclone Ash and Scrubber Ash

&
Pages 569-574 | Published online: 29 Feb 2012
 

Abstract

Deng-Fong Lin is a professor in the Department of Civil and Ecological Engineering at IShou University in Taiwan, Republic of China.This study investigates the pozzolanic reactions and compressive strength of the blended cement manufactured using synthetic slag obtained from municipal solid waste incinerator (MSWI) cyclone ash and scrubber ash as partial replacement of portland cement. The synthetic slag was made by co-melting the MSWI scrubber ash and cyclone ash mixtures at 1400 °C for 30 min. Following pulverization, the different types of slag were blended with cement as cement replacement at ratios ranging from 10 to 40 wt %. The synthetic slag thus obtained was quantified, and the characteristics of the slag-blended cement pastes were examined. These characteristics included the pozzolanic activity, compressive strength, hydration activity, crystal phases, species, and microstructure at various ages. The 90-day compressive strength developed by slag-blended cement pastes with 10 and 20 wt % of the cement replaced by the synthetic slag outperformed ordinary portland cement by 1-7 MPa. X-ray diffraction species analyses indicated that the hydrates in the slag-blended cement pastes were mainly portlandite, the calcium silicate hydrate gels, and calcium aluminate hydrate salts, similar to those found in ordinary portland cement paste. Differential thermal and thermogravimetric analysis also indicated that the slag reacted with port

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.