1,641
Views
24
CrossRef citations to date
0
Altmetric
Technical Papers

Feasibility of Ultraviolet-Light-Emitting Diodes as an Alternative Light Source for Photocatalysis

, , , , &
Pages 932-940 | Published online: 29 Aug 2011
 

ABSTRACT

The objective of this study was to determine whether ultraviolet-light-emitting diodes (UV-LEDs) could serve as an efficient photon source for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A (λmax = 365 nm) LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp for a bench scale annular reactor packed with silica-titania composite (STC) pellets. Lighting and thermal properties of the module were characterized to assess its uniformity and total irradiance. A forward current (I F) of 100 mA delivered an average irradiance of 4.0 mW cm−2 at a distance of 8 mm, which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED and BLB reactors were tested for the oxidization of ethanol (50 ppmv) in a continuous-flow-through mode with 0.94 sec residence time. At the same average irradiance, the UV-A LED reactor resulted in a lower CO2 production rate (19.8 vs. 28.6 nmol L−1 s−1), lower ethanol removal (80% vs. 91%), and lower mineralization efficiency (28% vs. 44%) than the UV-A BLB reactor. Ethanol mineralization was enhanced with the increase of the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED reactor relative to the BLB reactor at the same average irradiance could be attributed to the nonuniform irradiance over the photocatalyst, that is, a portion of the catalyst was exposed to less than the average irradiance. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous “on” and “off” feature for periodic irradiation. Nevertheless, our results also showed that the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB, demonstrating that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

IMPLICATIONS

Mercury (Hg)-vapor lamps are common UV sources for photocatalysis but create safety and environmental concerns because they contain Hg; furthermore, they have a relatively short life span. This paper demonstrated that the UV-A LED is a viable alternative to the Hg-vapor lamps without sacrificing PCO efficiency if the design of the LED arrays is improved to increase the lighting uniformity. The use of LEDs could eliminate hazardous Hg wastes and extend the application of photocatalysis in places requiring more compact and robust air purification solutions.

ACKNOWLEDGMENTS

The work was conducted under the auspices of the Life Science Support Contract and supported by a Kennedy Space Center Innovative Partnership Program (IPP) grant. The authors are extremely grateful to Dr. David Mazyck of the University of Florida for donating the photocatalyst. The authors would also like to thank Mr. Lawrence L. Koss for his invaluable assistance with the PCO test bed construction by making customized parts and Opto 22 data logging. The authors would also like to extend their appreciations to Mr. J. Schellack and Mr. D. Johnson of Lighting Science Groups Corporation for constructing the LED assembly and the KSC prototype shop personnel for fabricating the bench scale PCO reactor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.