1,275
Views
6
CrossRef citations to date
0
Altmetric
Technical Papers

Future Impacts of Distributed Power Generation on Ambient Ozone and Particulate Matter Concentrations in the San Joaquin Valley of California

, , &
Pages 1319-1333 | Published online: 23 Nov 2011
 

ABSTRACT

Distributed power generation—electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin—has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

IMPLICATIONS

The San Joaquin Valley is a fast growing region that demands increasing power generation to sustain the economic development, and at the same time it is one of the worst polluted areas in the United States. Hence, the region demands alternatives that minimize the air quality impacts of power generation. This paper addresses the air quality impacts of distributed generation of power, an alternative to central power generation that can potentially reduce greenhouse gas and pollutant emissions throughout the United States.

ACKNOWLEDGMENTS

The Authors gratefully acknowledge the financial support of the California Energy Commission (CEC) for sponsoring this work. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the CEC. The Authors thank the California Air Resources Board for their provision of the emissions inventory.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.