845
Views
12
CrossRef citations to date
0
Altmetric
Technical Papers

An examination of boundary layer structure under the influence of the gap winds in Urumqi, China, during air pollution episode in winter

, , , , , & show all
Pages 26-37 | Published online: 29 Dec 2011
 

Abstract

Tethered-sonde measurements of atmospheric profiles were performed at Urumuqi, capital of the Xinjiang Uyghur Autonomous Region of China, from 29 December 2008 to 14 January 2009. The data were used to examine the boundary layer structure during this severe air pollution period. Diurnal evolution of local wind flow near Urumqi was simulated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5). Measurements from operational radiosonde data showed that a southeasterly elevated low-level jet often intruded upon Urumqi through the middle Tianshan Mountain pass to the south of the city. The tethered-sonde measurements showed that calm and northwesterly winds prevailed near the surface in Urumqi, whereas the southeasterly winds of relatively higher speed were dominant above ∼400 m. Both temperature inversion and humidity inversion frequently occured during day and nighttime. Temperature inversion intensity could sharply rise as the stronger elevated southeasterly gale (ESEG) happened. Model simulations showed that the winds near the surface around Urumqi remained calm during nighttime and developed toward the mountains during daytime. As cool air flow in the basin confronted the southeasterly winds from the pass in the lower layer, they formed a convergence line around Urumqi city, which was not favor for dilution of air pollutants.

Implications:

There is little knowledge about the relationship between air pollution and the local gap wind (well known as the southeasterly gale [SEG]) in Urumqi during winter. On the basis of tethered-sonde measurements and model simulations, the authors showed that the SEG, if only occurring above ∼400 m (called the elevated SEG [ESEG] in this study), did alter the urban boundary-layer structure and favor formation of a convergence zone near the surface, which was beneficial for occurrence of severe air pollution episode. Therefore, it needs to further study how the ESEG maintains and impacts on atmospheric environment.

Acknowledgments

This work was supported by the National Department Public Benefit Research Foundation (Grant No. GYHY201006012), the Meteorological Science Fund of the Chinese Desert (Grant No. IDM2008003), the Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes (Grant No. 200909007), the National Natural Science Foundation of China (Grant No. 41075050), Xinjiang Meteorological Science Foundation (Grant No. C2008001) and Xinjiang Natural Science Foundation (Grant No. 2011211A102). The authors would like to thank the eight graduate students who performed the tethered-balloon observations in the chill of winter.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.