126
Views
0
CrossRef citations to date
0
Altmetric
Articles

Model-based statistical depth with applications to functional data

, , , &
 

ABSTRACT

Statistical depth, a commonly used analytic tool in nonparametric statistics, has been extensively studied for multivariate and functional observations over the past few decades. Although various forms of depth were introduced, they are mainly procedure based whose definitions are independent of the generative model for observations. To address this problem, we introduce a generative model-based approach to define statistical depth for both multivariate and functional data. The proposed model-based depth framework permits simple computation via a bootstrap sampling and improves the depth estimation accuracy. When applied to functional data, the proposed depth can capture important features such as continuity, smoothness or phase variability, depending on the defining criteria. We propose efficient algorithms to compute the proposed depths and establish estimation consistency. Through simulations and real data, we demonstrate that the proposed functional depths reveal important statistical information such as those captured by the median and quantiles, and detect outliers.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.