235
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of the proteome patterns of adipose-derived stem cells with those treated with selegiline using a two dimensional gel electrophoresis analysis

, ORCID Icon, &
 

ABSTRACT

Adipose derived stem cells (ADSCs) are multipotent and can transdifferentiate into neural stem cells. We investigated the transdifferentiation of ADSCs to neural phenotype (NP) cells using selegiline and two-dimensional electrophoresis (2-DE). The perinephric and inguinal fat of rats was collected and used to isolate ADSCs that were characterized by immunophenotyping using flow cytometry. The ADSCs were differentiated into osteogenic and lipogenic cells. The NP cells were generated using 10−9 mM selegiline and characterized by immunocytochemical staining of nestin and neurofilament 68 (NF-68), and by qRT-PCR of nestin, neurod1 and NF68. Total protein of ADSCs and NP cells was extracted and their proteome patterns were examined using 2-DE. ADSCs carried CD73, CD44 and CD90 cell markers, but not CD34. ADSCs were differentiated into osteocyte and adipocyte lineages. The differentiated NP cells expressed nestin, neuro d1 and NF-68. The proteome pattern of ADSCs was compared with that of NP cells and eight spots showed more than a two fold increase in protein expression. The molecular weights and isoelectric points of these highly expressed proteins were estimated using Melanie software. We compared these results with those of the mouse proteomic database using the protein isoelectric point database, and the functions of the eight proteins in differentiation of NP cells were predicted using the UniProt database. The probable identities of the proteins that showed higher expression in NP cells included cholinesterase, GFRa2, protein kinase C (PKC-eta) and RING finger protein 121. The sequences of the proteins identified from mouse database were aligned by comparing them with similar proteins in rat database using the Basic Local Alignment Search Tool (BLAST). The E values of all aligned proteins were zero, which indicates consistency of the matched protein. These proteins participate in differentiation of the neuron and their overexpression causes ADSCs transdifferentiation into NP cells.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This project was supported by Research Council of Tarbiat Modares University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.