233
Views
9
CrossRef citations to date
0
Altmetric
Articles

An adaptive multi-stage phase I dose-finding design incorporating continuous efficacy and toxicity data from multiple treatment cycles

ORCID Icon, , &
Pages 271-286 | Received 04 Oct 2017, Accepted 12 Aug 2018, Published online: 07 Nov 2018
 

ABSTRACT

Phase I designs traditionally use the dose-limiting toxicity (DLT), a binary endpoint from the first treatment cycle, to identify the maximum-tolerated dose (MTD) assuming a monotonically increasing relationship between dose and efficacy. In this article, we establish a general framework for a multi-stage adaptive design where we jointly model a continuous efficacy outcome and continuous/quasi-continuous toxicity endpoints from multiple treatment cycles. The normalized Total Toxicity Profile (nTTP) is used as an illustration for quasi-continuous toxicity endpoints, and we replace DLT with nTTP to take into account multiple grades and types of toxicities. In addition, the proposed design accommodates non-monotone dose-efficacy relationships, and longitudinal toxicity data in effort to capture the adverse events from multiple cycles. Stage 1 of our design uses toxicity data to perform dose-escalation and identify a set of initially allowable (safe) doses; stage 2 of our design incorporates an efficacy outcome to update the set of allowable doses for each new cohort and randomizes the new cohort of patients to the allowable doses with emphasis towards those with higher predicted efficacy. Stage 3 uses all data from all treated patients at the end of the trial to make final recommendations. Simulations showed that the design had a high probability of making the correct dose selection and good overdose control across various dose-efficacy and dose-toxicity scenarios. In addition, the proposed design allows for early termination when all doses are too toxic. To our best knowledge, the proposed dual-endpoint dose-finding design is the first such study to incorporate multiple cycles of toxicities and a continuous efficacy outcome.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.