402
Views
7
CrossRef citations to date
0
Altmetric
Articles

Time-trend impact on treatment estimation in two-arm clinical trials with a binary outcome and Bayesian response adaptive randomization

ORCID Icon, &
Pages 69-88 | Received 17 Mar 2018, Accepted 17 Mar 2019, Published online: 24 Apr 2019
 

ABSTRACT

Clinical trial design and analysis often assume study population homogeneity, although patient baseline profile and standard of care may evolve over time, especially in trials with long recruitment periods. The time-trend phenomenon can affect the treatment estimation and the operating characteristics of trials with Bayesian response adaptive randomization (BRAR). The mechanism of time-trend impact on BRAR is increasingly being studied but some aspects remain unclear. The goal of this research is to quantify the bias in treatment effect estimation due to the use of BRAR in the presence of time-trend. In addition, simulations are conducted to compare the performance of three commonly used BRAR algorithms under different time-trend patterns with and without early stopping rules. The results demonstrate that using these BRAR methods in a two-arm trial with time-trend may cause type I error inflation and treatment effect estimation bias. The magnitude and direction of the bias are affected by the parameters of the BRAR algorithm and the time-trend pattern.

Acknowledgments

The authors thank the anonymous reviewers for their careful review and great comments for this manuscript.

Proof 2

Scenario 1. Without time-trend effect, the average response rate does not change over time for either arm:

 p1,1=p1,2=p1,3=p1,4=........=p1,k1=p1,k=p˜1 p2,1=p2,2=p2,3=p2,4=........=p2,k1=p2,k=p˜2

The response rate difference between two treatment arms up to stage k is

Δk=E(p1,k)E(p2,k)=s=1kp1,s×n1,ss=1kn1,ss=1kp2,s×n2,ss=1kn2,s=p˜1s=1kn1,ss=1kn1,sp˜2s=1kn2,ss=1kn2,s=p˜1p˜2

Scenario 2. With time-trend effect for both arms, the average response rate changes across interim stages by τj. pj,k=p˜j+τjk j=1,2. In this proof, we assume τ1=τ2.

The expected cumulative response rate difference between two treatment arms up to stage k is

Δk=E(p1,k)E(p2,k)=s=1kp1,s×n1,ss=1kn1,ss=1kp2,s×n2,ss=1kn2,s=s=1k(p˜1+sτ1)×n1,ss=1kn1,ss=1k(p˜2+sτ2)×n2,ss=1kn2,s=s=1kp˜1×n1,s+s=1k(sτ1)×n1,ss=1kn1,ss=1kp˜2×n2,k+s=1k(sτ2)×n2,ks=1kn2,s=(p˜1p˜2)+τ1s=1ksn1,ks=1kn1,kτ2s=1ksn2,ks=1kn2,k
s=1ks×n1,ss=1kn1,s=n1,1+2n1,2+3n1,3+.....+sn1,sn1,1+n1,2+n1,3+.....+n1,s,s=1ks×n2,ss=1kn2,s=n2,1+2n2,2+3n2,3+.....+sn2,sn2,1+n2,2+n2,3+.....+n2,s.
k=1,Δk=(p˜1p˜2)+τ1n1,1n1,1τ2n2,1n2,1=(pˉ10pˉ20)+(τ1τ2)

k=2,Δk=(p˜1p˜2)+τ1(n1,1+2n1,2)n1,1+n1,2τ2(n2,1+2n2,2)n2,1+n2,2=(p˜1p˜2)+(τ1τ2)+τ1n1,2n1,1+n1,2τ2n2,2n2,1+n2,2   =(pˉ10pˉ20)+(τ1τ2)+τ1n1,1n1,2+1τ2n2,1n2,2+1=(p˜1p˜2)+(τ1τ2)+τ1r1r2n2,1n2,2+1τ2n2,1n2,2+1since n1,1=r1n2,1 and n1,2=r2n2,2.To find the general formula for defining the bias increase from (k – 1)th to kth interim stage:

ΔkΔk1=τs=1ks×n1,ss=1kn1,ss=1ks×n2,ss=1kn2,ss=1k1s×n1,ss=1k1n1,ss=1k1s×n2,ss=1k1n2,s

s=1ksn1,ss=1kn1,sk=1k1sn1,ss=1k1n1,s=s=1ksn1,ss=1k1n1,ss=1k1sn1,ss=1kn1,sk=1kn1,kk=1k1n1,ks=1ksn1,ss=1k1n1,s=s=1k1sn1,s+kn1,ks=1k1n1,s,s=1k1sn1,ss=1kn1,s=s=1k1sn1,ss=1k1n1,s+n1,ks=1ksn1,ss=1k1n1,ss=1k1sn1,ss=1kn1,s=kn1,ks=1k1n1,sn1,ks=1k1sn1,s=n1,ks=1k1sn1,sSimilarly, s=1ksn2,ss=1k1n2,ss=1k1sn2,ss=1kn2,s=n2,ks=1k1sn2,s. Therefore,

s=1ksn1,ss=1kn1,sk=1k1sn1,ss=1k1n1,ss=1ksn2,ss=1kn2,ss=1k1sn2,ss=1k1n2,s=n1,ks=1k1sn1,ss=1kn1,ss=1k1n1,sn2,ks=1k1sn2,ss=1kn2,ss=1k1n2,s

We define the allocation ratio rk=n1,kn2,k,n1,k= rkn2,k

n1,ks=1k1sn1,ss=1kn1,ss=1k1n1,sn2,ks=1k1sn2,ss=1kn2,ss=1k1n2,s=rkn2,ks=1k1srsn2,ss=1krsn2,ss=1k1rsn2,sn2,ks=1k1sn2,ss=1kn2,ss=1k1n2,s=rkn2,ks=1k1srsn2,ss=1kn2,ss=1k1n2,sn2,ks=1k1sn2,ss=1krsn2,ss=1k1rsn2,ss=1krsn2,ss=1k1rsn2,ss=1kn2,ss=1k1n2,s
rkn2,ks=1k1srsn2,ss=1k1n2,s+n2,ks=1k1n2,sn2,ks=1k1sn2,ss=1k1rsn2,s+rkn2,ks=1k1rsn2,s=rkn2,ks=1k1srsn2,ss=1k1n2,ss=1k1n2,s+rkn2,kn2,ks=1k1srsn2,ss=1k1n2,sn2,ks=1k1sn2,ss=1k1rsn2,ss=1k1rsn2,srkn2,kn2,ks=1k1sn2,ss=1k1rsn2,s

Qs=1k1srsn2,ss=1k1n2,ss=1k1n2,s=a=1k1b=1k1c=1k1aran2,an2,bn2,c,s=1k1sn2,ss=1k1rsn2,ss=1k1rsn2,s=a=1k1b=1k1c=1k1an2,arbn2,brcn2,c \there4rkn2,ks=1k1srsn2,ss=1k1n2,ss=1k1n2,sn2,ks=1k1sn2,ss=1k1rsn2,ss=1k1rsn2,s=n2,ka=1k1b=1k1c=1k1an2,an2,bn2,b(rkrarbrc)>0 as r1<r2<r3<.....<rk1<rk.
Similarly, we can find that
rkn2,kn2,ks=1k1srsn2,ss=1k1n2,srkn2,kn2,ks=1k1sn2,ss=1k1rsn2,s=rkn2,kn2,ka=1k1b=1k1aran2,an2,brkn2,kn2,ka=1k1b=1k1an2,arbn2,b=rkn2,kn2,ka=1k1b=1k1an2,an2,b(rarb)=0

Therefore, the bias increase from (k – 1)th to kth interim stage is

ΔkΔk1=τn1,ks=1k1kn1,ss=1kn1,ss=1k1n1,sn2,ks=1k1kn2,ss=1kn2,sk=1k1n2,s=τn2,ka=1k1b=1k1c=1k1kn2,an2,bn2,c(rarkrbrc)s=1kn1,ss=1k1n1,ss=1kn2,ss=1k1n2,s

which is positive. Therefore, with equal trend, the bias increases with increase in the randomization allocation ratio across stages.

Scenario 3. If the trend effects are different between two arms:τ1τ2,

ΔkΔk1=τ1n1,ks=1k1kn1,ss=1kn1,ss=1k1n1,sτ2n2,ks=1k1kn2,ss=1kn2,sk=1k1n2,s=n2,ka=1k1b=1k1c=1k1an2,an2,bn2,b(τ1rkraτ2rbrc)+rkn2,kn2,ka=1k1b=1k1an2,an2,b(τ1raτ2rb)s=1kn1,ss=1k1n1,ss=1kn2,ss=1k1n2,s

From this equation, we observe that the treatment effect estimation in adaptive design can be biased when there is time-trend effect. The bias comes from two sources: (1) change in randomization allocation across stages r1,r2,r3.,rK,rjrk,jk| j,kϵ{1,2,3,,K}; and (2) the difference in the magnitude of time-trend effect (α1α2). If either condition is not met, the treatment effect estimation will be biased.

WinBUGS Code

model{

for (i in 1:N){

out[i]~dbern(p[i])

ypred[i]~dbern(p[i])

logit(p[i])<-b0+btrt*arm[i]+bt*group[i]

}

b0~dnorm(0.0,tau.b0)

tau.b0~dgamma(0.2,0.4)

btrt~dnorm(0.0,tau.btrt)

tau.btrt~dgamma(0.2,0.4)

bt~dnorm(0.0,tau.bt)

tau.bt<-pow(sd.bt,-2)

sd.bt~dunif(0,10)

OR<-exp(btrt)

ppbest<-1-step(1-OR)

}

Notation:

i: ith subject.

out: binary response outcome.

p: response rate.

arm: treatment.

group: the interim stage for subject i.

btrt(βtrt): treatment effect estimate.

bt (β): beta coefficient for time-trend effect.

tau.btrt (ψβtrt): precision of the parameter estimate for treatment effect.

tau.bt (ψβ): precision of the parameter estimate for time-trend effect.

sd.bt (σβ): standard deviation of the parameter estimate for time-trend effect.

ppbest: probability that the odds ratio of one treatment versus the other is greater than 1.

Additional information

Funding

This research is partly supported by the NIH/NINDS grants [U01NS0059041] (NETT) and [U01NS087748] (StrokeNet).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.