Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 28, 2000 - Issue 1-4
20
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Brillouin and raman spectra anomalies in knsbn with the tungsten bronze structure

, , , , &
Pages 95-102 | Received 13 May 1999, Accepted 02 Aug 1999, Published online: 19 Aug 2006
 

Abstract

The Brillouin and Raman scattering from a complex single crystal from the tungsten-bronze family, (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 doped with Cu2+ (KNSBN:Cu), have been comparatively studied in a wide temperature range around the ferroelectric transition. Step-like anomalies in hypersonic velocity and damping confirm the first-order structural transition. These anomalies look like some perturbations on the high-temperature slopes of both a broad dip in sound velocity and a broad maximum in damping that develop in a wide temperature range. The acoustic behavior of KNSBN:Cu does not simply follow the Landau theory prediction valid for many ferroelectrics except relaxors, to which the KNSBN:Cu behavior is intrinsically analogous. The total intensity of the Raman spectra as well as the intensity of separate internal and external vibrations and their width correlate with acoustic anomalies, namely there are step-like drops at the same temperature of the first-order transition and a broad range where the intensity is drastically increased.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.