Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 32, 2001 - Issue 1-4
14
Views
2
CrossRef citations to date
0
Altmetric
Section E: Testing and characterization

Electrical and optical properties of microwave dielectric thin films prepared by pulsed laser deposition

, &
Pages 33-43 | Received 15 Mar 2000, Published online: 12 Sep 2006
 

Abstract

Bi2(Zn1/3Nb2/3)2O7, BiZN, materials possess high dielectric constant and low loss factor in microwave frequency region. They have good potential for device application, especially in the form of thin films. However, the microwave dielectric properties of a thin film are very difficult to be accurately measured. Evaluation on the dielectric behavior of the films through the performance of the microstrip line devices made of these films involves metallic conduction and stray field losses. A novel measuring technique, which can directly evaluate the microwave dielectric properties of a thin film is thus urgently needed.

In this paper, BiZN thin films were grown on [100] MgO single crystal substrates using pulsed laser deposition process. The high-frequency dielectric properties of thus obtained thin films were determined using optical transmission spectroscopy (OTS). The [100] preferentially oriented films with pyrochlore structure can be obtained for the thin films deposited at 400–600°C substrate temperature under 0.1 mbar oxygen pressure. OTS measurements reveal that the index of refraction (n=1.95–2.35) and absorption coefficient (k=0.28x10−4-2.25 × 10−4 nm−1) of the films vary insignificantly with the crystallinity of the BiZN films.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.