Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 77, 2005 - Issue 1
85
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

MEMS BASED BULK ACOUSTIC WAVE RESONATORS FOR MOBILE APPLICATIONS

, , , , &
Pages 101-108 | Received 17 Apr 2005, Published online: 11 Oct 2011
 

ABSTRACT

A silicon based film bulk acoustic wave resonator (FBAR) composed with a filter and a duplexer is fabricated using the bulk micro-machining process. It has a simple MIM (metal-insulator-metal) membrane structure using molybdenum (Mo) for the top and bottom electrodes. The bulk acoustic wave resonances are generated by the piezoelectricity of aluminum nitride (AlN) with an air gap cavity fabricated below the membrane by silicon deep-etch process to reduce acoustic loss of FBAR. The fabricated FBAR is measured with HP 8510C vector network analyzer in wide (0.5∼10.5 GHz) and narrow (1.7∼2.1 GHz) frequency range. The measured series and parallel resonance frequencies are 1856 MHz and 1907 MHz, respectively. The minimum insertion losses are less than 0.07 dB at the series resonance frequency. With the increase of the membrane area, insertion loss decreases and effective electromechanical coefficient increases. The measured effective electromechanical coefficients are higher than 6.4%. The circuit modeling of FBAR is preformed based on the MBVD (modified Butterworth Van-Dyke) model. The above results demonstrate that the fabricated FBAR has sufficient performance to be the building block of RF filters for mobile applications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.