95
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Annealing Temperature on Structural, Morphological and NH3 Sensing Properties of Nanostructured WO3 Porous Films

, , , , &
Pages 49-55 | Received 22 Jul 2013, Accepted 07 Feb 2014, Published online: 14 May 2014
 

Abstract

The tungsten trioxide (WO3) precursor was prepared by sol-gel method with tungsten powder as the raw material, and the WO3 gas sensing films were obtained by a dip coating method and annealing precursor in air. X-ray diffraction (XRD) spectra indicate that with increasing annealing temperature the triclinic structure of as-prepared sample was transformed into monoclinic or orthorhombic phase. The images of scanning electron microscopy (SEM) exhibit that the WO3 grain sizes increase from less than 100 nm to several micrometers with increasing annealing temperature. The influences of applied frequency, annealing and operating temperature on NH3 gas sensing properties of the nanostructured WO3 porous films were investigated. The results indicate that the gas sensing film annealed at 500°C express high sensitivity, fast response and recovery speed to NH3 at operating temperature 250°C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.