Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 201, 2019 - Issue 1
50
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ferroelectric Memristive Networks for Dimensionality Reduction: A Process for Effectively Classifying Cancer Datasets

, , , &
Pages 126-141 | Received 10 Jul 2019, Accepted 06 Sep 2019, Published online: 10 Dec 2019
 

Abstract

In this work, a copper-doped (5%) zinc oxide (Cu:ZnO) ferroelectric materials-based memristor model was realized and it was employed to develop principal component analysis (PCA), a data dimension reduction technique. The developed PCA was utilized to efficaciously classify breast cancer datasets, which are considered as complex and big volumes of data. It was found that the controllable memristance variations were analogous to the weight modulations in the implemented neural network-based learning systems. Sanger’s rule was utilized to achieve unsupervised online learning in order to generate the principal components. On one side, the developed memristor-based PCA network was found to be effective to isolate distinct breast cancer classes with a high classification accuracy of 97.77% and the error in the classification of malignant cases as benign of 0.529%, a significantly low value. On the other side, the power dissipation was found to be 0.27 µW, which suggests the proposed memristive network is suitable for low-power applications. Further, a comparison was established with other existing non-memristor and non-PCA-based data classification systems. Furthermore, the devised less complex equations to implement PCA on this memristive crossbar array could be employed to implement any neural network algorithm.

Acknowledgments

All the authors sincerely acknowledge the supports from BITS Pilani Hyderabad Campus and their cleanroom facilities in order to carry out the research work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.