Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bacterial Cellulose/Titanate Nanotubes Composite Kirigami for Flexible and Stretchable Motion Sensor

, , , , , , & show all
Pages 115-124 | Received 15 Jan 2023, Accepted 24 Apr 2023, Published online: 29 Sep 2023
 

Abstract

A composite of bacterial cellulose and titanate nanotubes (BC/TNT) was prepared for use as a stretchable motion sensor in smart and wearable electronics. The composite was characterized using various techniques such as UV-VIS-NIR spectroscopy, SEM, XRD, IR spectroscopy, and thermogravimetric analysis. It was found that the dielectric constant of BC/TNT was up to 2.6 times that of BC with similar loss tangent, indicating improved charge storage. The composite was also constructed into a Kirigami pattern for improved stretchability. With a tensile strain of 0.4%, the change in resistance relative to the original resistance (ΔR/R0) was found to be 5.7% and 6.9% for BC and BC/TNT, respectively, demonstrating improved sensing performance.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was financially supported by King Mongkut’s Institute of Technology Ladkrabang (KMITL) under Grant No. KREF116501. Kanokwan Chaithaweep’s work was financially supported by the School of Science, KMITL under Grant No. RA/TA 2565-M-002. We acknowledge the facilities and technical assistance provided by the Nanotechnology and Materials Analytical Instrument Service Unit (NMIS) at the College of Materials Innovation and Technology, KMITL.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.