Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
72
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multiferroic Properties of (1-x)BiFeO3-xBaTiO3 Lead-Free Ceramics

, , , , &
Pages 136-146 | Received 15 Jan 2023, Accepted 29 Apr 2023, Published online: 29 Sep 2023
 

Abstract

Lead-free (1-x)BiFeO3-xBaTiO3 ceramics (abbreviated as BF-xBT), in a composition range of 0.23 ≤ x ≤ 0.33 mol%, were prepared by the conventional solid-state reaction method. The effect of x content on phase structure, microstructure, magnetic and electrical properties of BF-xBT ceramics is also investigated. With the incorporation of x content, the coexistence of rhombohedral and tetragonal phases was observed. Field emission scanning electron microscope (FESEM) micrographs revealed that the average grain size of BF-xBT ceramics first decreased and then increased with adding x content. The fracture surface of samples showed a mode of inter-granular fracture and intra-granular fracture. The ferroelectric properties were enhanced by adding x ≥ 0.29 mol% in the BF-xBT system. The dielectric and magnetic properties were improved with a maximum value are εr = 888,711, Mmax = 0.40 emu/g, Mr = 0.17 emu/g, and Hc = 3.7 kOe at x = 0.25 mol%

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported financially by The National Science, Research and Innovation Fund (NSRF) through Naresuan University (R2565B059). The authors wish to thank the Faculty of Science and Technology, Pibulsongkram Rajabhat University is also supported. This work received the best poster award from the International Conference and Exhibition on Science, Technology and Engineering of Materials (ISTEM2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.