Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of the Dielectric and Energy Storage Properties of Lead-Free BNSLT Ceramics by Zr4+ Substitution into B-Sites

, , , , , & show all
Pages 39-51 | Received 15 Jan 2023, Accepted 14 Apr 2023, Published online: 29 Sep 2023
 

Abstract

(Bi0.38Na0.30Sr0.28)0.98La0.02Ti1-xZrxO3 (abbreviated as BNSLT1-xZrx, with x = 0 − 0.05) lead free ceramics were fabricated using the solid-state combustion method. The phase structure, microstructure and electrical properties of the ceramics were investigated. The coexistence of the rhombohedral (R) and tetragonal (T) phases was found in all samples. Rietveld refinement confirmed that as x increased from 0 to 0.05, the rhombohedral phase increased from 41 to 60%. A nearly equal R:T phase ratio of 49:51 was obtained for x = 0.01. All ceramics displayed polygonal grain shapes with anisotropic grain growth. The average grain size of the ceramics was in the range of 0.46–0.79 µm. The optimal Zr4+ content resulted in increased grain growth and reduced pores, leading to improved electrical properties. The highest density (5.52 g/cm3), maximum dielectric constant (εm=2156), maximum polarization (Pmax=15.36 µC/cm2) and high energy storage properties (Wtotal=0.49 J/cm3, Wrec=0.45 J/cm3, Wloss=0.05 J/cm3 and η = 90.54% at 60 kV/cm) were obtained from x = 0.01 caused by a morphotropic phase boundary (MPB) and good morphology.

Acknowledgments

The authors thank the Department of Physics, Faculty of Science, Naresuan University for their supporting facilities and Prof. Dr. David P. Cann, Oregon State University, for his assistance with polarization-electric field (P-E) hysteresis loop measurements. Thanks, are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by The National Science, Research and Innovation Fund (NSRF) through Naresuan University [R2565B059]. The work of N. Vittayakorn was supported by KMITL through [Grant No. KREF116501].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.