Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 17, 1997 - Issue 1-4
32
Views
9
CrossRef citations to date
0
Altmetric
Device integration

The effects of forming gas anneal on the electrical characteristics of ir-electroded BST thin film capacitors

, , , , , , , & show all
Pages 461-469 | Published online: 19 Aug 2006
 

Abstract

The effect of various temperature nitrogen anneals prior to top electrode deposition on the ability of Ba0.7Sr0.3TiO3 (BST) thin-film capacitors with both Ir and Pt top electrodes to withstand hydrogen damage was investigated. Experimental results show that samples that underwent a 750 °C N2 pre-top electrode anneal exhibited the lowest leakage current density at positive bias for both Ir- and Pt-electroded devices after forming gas anneal. It was also found that DRAM polarization values decreased slightly after forming gas anneal. Also, a post-top electrode deposition 550°C O2 anneal improved both electrical characteristics (lowered leakage and increased DRAM polarization) of these devices. Complete recovery of the leakage level prior to hydrogen damage was obtained after a 550°C N2 recovery anneal for some devices independent of the pre-top electrode anneal. Ir- and Pt-electroded BST (40nm) capacitors have been shown to meet the 1 giga-bit DRAM leakage current requirement of 10−8 A/cm2 at 1.7 V. These Ir- and Pt-electroded BST devices achieved capacitance density levels of approximately 50 fF/μm2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.