Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 22, 1998 - Issue 1-4
85
Views
61
CrossRef citations to date
0
Altmetric
Session 8. High frequency devices

Structure/property relationships in ferroelectric thin films for frequency agile microwave electronics

, , , , , , & show all
Pages 279-289 | Published online: 19 Aug 2006
 

Abstract

Ferroelectric thin films, deposited by pulsed laser deposition (PLD), are currently being used to develop a new class of tunable microwave circuits based on the electric field dependence of the dielectric constant. Single phase, (100) oriented Ba0.5Sr0.5TiO3 (BST) films have been deposited onto (100) LaAlO3, SrTiO3, and MgO substrates. Interdigitated capacitors patterned on top of the ferroelectric film have been used to measure the dielectric constant and dissipation factor of these films as a function of DC bias and temperature at 1 MHz and as a function of DC bias and frequency (1 to 20 GHz) at room temperature. The dielectric properties of the ferroelectric film is sensitive to both the deposition and post processing conditions. Optical imaging of the ferroelectric films using confocal scanning optical microscopy (CSOM) shows reproducible polarization fluctuations over sub-micrometer length scales for BST films deposited onto SrTiO3 which are not observed for films deposited onto MgO. Dielectric loss in the ferroelectric film is reduced through a combination of post deposition processing and donor/acceptor doping of the films. The lowest dielectric loss measured has been tanδ = 0.01 – 0.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.