117
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Piezoelectric radiofrequency transducers as passive buried sensors

, , , , , , , , & show all
Pages 209-218 | Received 09 Oct 2011, Accepted 23 Feb 2012, Published online: 21 May 2012
 

Abstract

We demonstrate that single-piezoelectric substrate-based acoustic transducers act as ideal sensors for probing with various RADAR strategies. Because these sensors are intrinsically passive devices working in the radiofrequency range, they exhibit improved interrogation range and robustness with respect to silicon-based radio frequency identification tags. Both wideband (acoustic delay lines) and narrowband (acoustic resonators) transducers are shown to be compatible with pulse-mode and frequency-modulated continuous-wave RADAR strategies, respectively. We particularly focus on the ground-penetrating RADAR (GPR) application in which the lack of local energy source makes these sensors suitable candidates for buried applications in roads, building or civil engineering monitoring. A novel acoustic sensor concept – high-overtone bulk acoustic resonator – is especially suited as sensor interrogated by a wide range of antenna set, as demonstrated with GPR units working in the 100 and 200 MHz range.

Acknowledgements

Part of the funding for this project was provided by the French National Research Agency (ANR) under the Cryo-Sensors grant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.