145
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Electron Beam Irradiation on the Structural Properties of PVA/PAM/CMC Ternary Polymer Blends

Pages 495-501 | Received 01 Sep 2006, Accepted 01 Oct 2006, Published online: 13 Oct 2010
 

Ternary miscible blends based on various ratios of poly(vinyl alcohol) (PVA), poly(acrylamide) (PAM) and carboxymethyl cellulose (CMC) were prepared by solution casting in the form of thin films. The structure‐property behavior of the ternary PVA/PAM/CMC blends, before and after they had been exposed to various doses of electron beam irradiation, was investigated by FT‐IR spectroscopy, SEM, XRD and stress‐strain curves. The visual observation showed that the cast films of the individual polymers PVA, PAM, and CMC and their blends over a wide range of composition are clear and transparent indicating the miscibility of PVA/PAM/CMC ternary blends. The FT‐IR analysis of pure polymers or their ternary blends before or after electron beam irradiation proved the formation of hydrogen bonding. In addition, it was found that the intensity of the different absorption bands depends on the ratio of PAM and CMC in the ternary blend. The XRD patterns showed that the peak position for the ternary blends decreases with increasing the ratio of CMC in the blend. However, the peak position for the ternary blend based on equal ratios of pure polymers was not affected by blending and was found in the same position as in the XRD pattern of pure PVA. The SEM micrographs give support to the visual observation indicating the complete miscibility of PVA/PAM/CMC ternary blends. The improvement in morphology leads to improvement in the tensile mechanical properties of the ternary polymer blends.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.