30
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Poly(dibromophenylene oxide)s Through Atom Transfer Radical Rearrangement Polymerization of Various Transition Metal Complexes

&
Pages 321-330 | Received 01 Feb 2008, Accepted 01 Oct 2008, Published online: 22 Jan 2009
 

Abstract

In this study, the synthesis of poly(dibromophenylene oxide)s were achieved via atom transfer radical rearrangement polymerization through decomposition of Bis(2,4,6-tribromophenolato)di(N-methyl imidazole)Cu(II)-Cu(TBP)2(NMIZ)2, Bis(2,4,6-tribromophenolato)di(N-methyl imidazole)Co(II)-Co(TBP)2(NMIZ)2, Bis(2,4,6-tribromophenolato)di(N-methyl imidazole)Ni(II)-Ni(TBP)2(NMIZ)2 complexes. Polymerizations were carried out under two different conditions to investigate the effect of time and temperature on percent conversions, intrinsic viscosities. Characterizations of the polymers were performed by FTIR, DSC,1H-NMR, 13C-NMR, SEM and viscometric measurements. The poly(dibromophenylene oxides)s, synthesized by the transition metal complexes, having nonchelating ligand N-methyl imidazole, displayed selectivity in the favor of 1-2 and 1-4 additions, taking place at equal rates irrespective of the type of the metal used. Among the synthesized polymers, the highest percent conversion and intrinsic viscosity was achieved by the decomposition of Cu(TBP)2(NMIZ)2 complex, whereas, Ni(TBP)2(NMIZ)2 yielded the lowest. Investigation of the complexes via mass spectroscopy and the thermal behavior of the by-products enlightened the underlying reasons of the variations at percent conversion and intrinsic viscosity values of the resultant polymeric products.

Acknowledgments

Authors are gratefully thank to METU and Akdeniz University research funds for their support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.