201
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A Copper-Based Reverse ATRP Process for the Living Radical Polymerization of 4-Vinylpyridine: Discussion on Optimum Reaction Conditions

, , , &
Pages 832-836 | Received 01 Nov 2008, Accepted 01 Feb 2009, Published online: 22 Jun 2009
 

Abstract

In this original experiment, reverse atom transfer radical polymerization technique using CuCl2/hexamethyl tris[2-(dimethylamino)ethyl]amine (Me6-TREN) as catalyst complex was applied to living radical polymerization of 4-vinylpyridine (4VP) with azobisisobutyronitrile (AIBN) as initiator. N,N-Dimethylformamide was used as solvent to improve the solubility of the reaction system. The polymerization not only showed the best control of molecular weight and its distribution, but also provided a rather rapid reaction rate with the molar ratio of [4VP]:[AIBN]:[CuCl2]:[Me6-TREN] = 400:1:2:2. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 51.5 kJ· mol1. Use of Cl as the halogen in copper halide had many advantages over the use of Br. The resulting poly(4-vinylpyridine) was successfully used as the macroinitiator to proceed the block polymerization of styrene in the presence of CuCl/Me6-TREN catalyst complex via a conventional ATRP process in DMF.

Acknowledgments

The authors are grateful for the financial support by the Natural Science Foundation of Shandong Province (No. Q2006F05), the Applied Project of Educational Bureau of Shandong Province (No. J08LC03).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.