152
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

NMR and mass spectral analysis of step-growth polymers from azide alkyne cycloaddition and regioselectivity afforded by copper(I) and ruthenium(II) catalysts

, , , &
Pages 413-423 | Received 01 Feb 2016, Accepted 01 Feb 2016, Published online: 17 May 2016
 

ABSTRACT

Azide alkyne cycloaddition was applied to step growth polymerization of the diazido monomer, di(3-azido-2-hydroxypropyl) ether of bisphenol-A (DAHP-BPA) with either tetraethyleneglycol dipropargyl ether (TEGDPE) or tetraethyleneglycol dipropiolate (TEGDP). Polymerizations were conducted without catalyst and in the presence of Cu(I) or Ru(II) complex. The resulting oligomers and polymers were characterized using 1H- and 13C-NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), with an emphasis on the relative abundance of 1,4- vs. 1,5-disubstituted regioisomeric 1,2,3-triazoles. Uncatalyzed reaction of DAHP-BPA/TEGDPE at 70°C yielded a 55/45 mixture of 1,4/1,5-disubstituted triazoles; reaction was slow and residual alkyne end groups were observed, suggesting attritional loss of azide. Catalyzed with Cu(PPh3)3Br, the same system yielded 93/7, 1,4/1,5-disubstituted triazoles, and few residual end groups were detected, consistent with higher molecular weight and controlled 1:1 depletion of azide and alkyne. Cp*RuCl(COD) catalyst was not soluble in the bulk system, necessitating solution polymerization in THF. Ru(II) yielded 6/94, 1,4/1,5-disubstituted triazoles, and MALDI-TOF-MS showed an end group composition similar to that observed with Cu(I). Uncatalyzed reaction of the DAHP-BPA/TEGDP system, involving the more reactive propiolate, yielded a high proportion (85%) of 1,4-disubstituted triazole linkages, and MALDI-TOF-MS revealed a controlled 1:1 depletion of azide and alkyne groups.

Funding

The authors would like to thank The University of Southern Mississippi Composites Center, funded by The Office of Naval Research and Northrop Grumman, Award No. N00014-07-1-1057, for partial financial support of this research. Partial support for Christina Gray was provided by the National Science Foundation SusChEM: REU Site: Polymer Innovation for a Sustainable Future, DMR Award #1359239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.