401
Views
14
CrossRef citations to date
0
Altmetric
Articles

Indole-3-acetic acid based tunable hydrogels for antibacterial, antifungal and antioxidant applications

, &
Pages 151-163 | Received 01 Aug 2016, Accepted 01 Aug 2016, Published online: 31 Jan 2017
 

ABSTRACT

Indole-3-acetic acid (IAA) based biopolymeric hydrogels with tunable anti-oxidant and anti-fungal character has been synthesized via condensation polymerization as pH-sensitive hydrophilic material.The present study focused on the synthesis of antifungal heterocyclic hydrogel using citric acid (CA), indole-3-acetic acid (IAA) and ethylene glycol (EG) by condensation polymerization. The hydrogels revealed a pH-sensitive swelling behavior, with increased swelling in acidic media, which in turn has decreased the swelling in the basic media.The hydrogel samples were tested for antifungal activity against Aspergillus fumigates, Rhizopusoryzae and Candida albicans at different concentrations (500, 1000, 1500, 2000 μg/well). Ketoconazole was used as positive control and DMSO as negative control for antifungal activity. Fungi were increasingly identified as major pathogens in various infections. Hydrogels with antifungal properties may constitute an important restriction to fungal infections. The biopolymeric hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1H-NMR,13C-NMR, TGA, DSC followed by scanning electron microscopy (SEM). The increased antifungal activity was monitored in equimolar composition more than that of other compositions. The antioxidant activity of ICE with DPPH and NO radicals has been compared with rutin. Such antifungal hydrogels with antioxidant properties is recommended for medical applications such as bandages, catheters, drains and tubes to prevent infection.

Acknowledgments

Ms. G. Chitra gratefully acknowledges the authorities of the Bangalore College of Engineering and Technology, Bangalore, Karnataka, India for providing laboratory facilities. Ms. G. Chitra also wishes to thank SAIF, NIT Calicut for Instrumentation analysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.