214
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Histidine-epoxy-activated sepharose beads embedded poly (2-hydroxyethyl methacrylate) cryogels for pseudobiospecific adsorption of human immunoglobulin G

, , &
Pages 915-922 | Received 01 Jan 2017, Accepted 01 Sep 2017, Published online: 24 Oct 2017
 

ABSTRACT

The use of highly purified immunoglobulin became among the most powerful adopted strategies in therapeutic trials nowadays. Their role as immunomodulatory and anti-inflammatory agents has widened their scope of use. A novel continuous supermacroporous monolithic cryogels embedded with histidine-epoxy-activated-sepharose beads were synthetized as a new monolithic adsorbents for the separation of immunoglobulin G from human serum. The histidine-epoxy-activated-sepharose beads were embedded into the 2-hydroxyethyl methacrylate (HEMA) cryogels present in frozen aqueous solution inside a plastic syringe. The microstructure morphology of the cryogels was characterized by swelling measurement and scanning electron microscopy. The adsorption of human IgG on the histidine-epoxy-activated-sepharose beads pHEMA cryogels appeared to follow the Langmuir–Freundlich adsorption isotherm model. The maximum IgG adsorption was observed at 4°C and pH 7.4 and was found to be 26.95 mg/g of cryogel which is close to that obtained experimentally (24.49 mg/g). The cryogels were used for several adsorption-desorption cycles without any negligible decrease in their adsorption capacity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.