338
Views
6
CrossRef citations to date
0
Altmetric
Articles

Synthesis of new type temperature and pH sensitive hydrogels using drug-based p-(methacryloyloxy)acetanilide monomer and their usage as controlled drug carrier material

&
Pages 295-306 | Received 25 Nov 2021, Accepted 06 Jan 2022, Published online: 20 Jan 2022
 

Abstract

In our study, as a functional monomer, p-(methacryloyloxy)acetanilide (MOAA) was synthesized and utility in hydrogel systems with various commercial monomers after the structural characterization was analyzed. In terms of temperature sensitivity and suitability for use in biological applications, N-isopropyl acrylamide (NIPAm) monomer and pH-sensitive acrylic acid (AAc) monomer were chosen among the commercial monomers. To the best of our knowledge, p(N-isopropyl acrylamide-co-p-(p-methacryloyloxy)acetanilide) (GEL 5) and p(N-isopropyl acrylamide-co-acrylic acid-co-p-(p-methacryloyloxy)acetanilide) (GEL 8) were synthesized in the form of a film with the free radical polymerization technique for first time in the literature. The structural characterizations and surface morphologies of the hydrogels p(NIPAm) (GEL 1), p(NIPAm-co-MOAA) (GEL 5), and p(NIPAm-co-AAc-co-MOAA) (GEL 8) were investigated by using the techniques of FTIR spectroscopy and scanning electron microscope (SEM). Moreover, the thermal resistance of all three hydrogels was brightened by the thermal gravimetric analysis (TGA). Swelling behaviors in different environments of the MOAA-based hydrogels, prepared as pH and temperature-sensitive, were examined, and biomedical applications are occurred by the investigation of the usability as a controlled drug delivery material. For this purpose, sodium diclofenac (NaDc) drug, used in pain and inflammation treatment, was chosen. In vitro release of NaDc from the drug-loaded hydrogel was examined in pH 5.5 (PBS) and pH 7.4 (PBS) media. Korsmeyer-Peppas model was used in defining the drug release mechanism.

Graphical Abstract

Acknowledgements

This study is derived from a part of Zeynep Güngör's PhD thesis. Zeynep Güngör is thankful to the Turkish Higher Education Council (YÖK)'s 100/2000 PhD fellowship program for supporting.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.