19
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Living Carbocationic Polymerization. LII. Living Carbocationic Copolymerization of Indene and p-Methylstyrene. 2. Synthesis, Characterization, and Physical Properties of Poly((Indene-co-p-Methylstyrene)-b-Isobutylene-b-(Indene-co-p-Methylstyrene)) Thermoplastic Elastomers

&
Pages 269-276 | Received 05 Jun 1992, Published online: 24 Sep 2006
 

Abstract

Novel thermoplastic elastomers (TPEs) consisting of a central rubbery polyisobutylene (PIB) segment flanked by two glassy outer segments comprising indene (Ind)-co-p-methylstyrene (pMeSt) random copolymers have been prepared. The synthesis was effected by sequential monomer addition in one reactor: The process starts by the biliving homopolymerization of isobutylene (IB) and yields the living dication +PIB+; the latter, upon the introduction of Ind/pMeSt mixtures, induces the living copolymerization of these monomers and yields the target TPE P(Ind-co-pMeSt)-b-PIB-b-P(Ind-co-pMeSt) triblock. The length of the rubbery midblock and the composition of the Ind-co-pMeSt random copolymer outer blocks (i.e., the overall composition of the triblocks) can be readily controlled. The glass transition temperature (Tg ) of the outer blocks can be fine-tuned by controlling the relative Ind/ pMeSt composition. The triblocks are excellent TPEs; for example, a P(Ind-co-pMeSt)-b-PIB-b-P(Ind-co-pMeSt) of M n ≈ 115,000 g/mol containing a PIB midblock of M n ≈ 70,200 g/mol and glassy copolymer outer blocks of P(Ind-co-pMeSt) [Ind/pMeSt = 41/59 (w/w)] exhibited 23.4 MPa tensile strength and 460% elongation. Tensile strengths and 300% moduli increase with the relative amount of the glassy segment present. Hardness increases with increasing Ind content.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.