112
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Kinetic and thermodynamic inclusion complexes of symmetric teramethyl-substituted cucurbit[6]uril with HCl salts of N,N′-bis(pyridylmethyl)-1,6-hexanediamine

, , , , , , & show all
Pages 619-628 | Received 10 Oct 2009, Accepted 15 Jul 2010, Published online: 31 Aug 2010
 

Abstract

The host–guest interaction of symmetrical α,α′,δ,δ′-tetramethyl-cucurbit[6]uril (TMeQ[6]) with the hydrochloride salts of N,N′-bis(4-pyridylmethyl)-1,6-hexanediamine (P6), N,N′-bis(3-pyridyl-methyl)-1,6-hexanediamine (M6) and N,N′-bis(2-pyridylmethyl)-1,6-hexanediamine (O6) was investigated via single crystal X-ray diffraction, 1H NMR spectroscopy, electronic absorption spectroscopy and fluorescence spectroscopy. Single crystal X-ray diffraction showed that the hexyl moiety of P6 or M6 was incorporated in the cavity of TMeQ[6], while the two pyridylmethyl moieties of O6 were incorporated in the TMeQ[6] cavity in the solid state. The 1H NMR results in aqueous solution revealed that the TMeQ[6]-P6 and TMeQ[6]-M6 host–guest interaction systems produce a kinetic dumbbell-shaped inclusion complex at the initial stage and then an equilibrium pseudorotaxane-shaped inclusion complex as the only product after heating. However, only the pseudorotaxane-shaped inclusion complex was observed for the TMeQ[6]-O6 host–guest interaction system. Aqueous absorption spectrophotometric analysis showed that the dumbbell-shaped inclusion complexes were stable at pH 5.6, had a host–guest ratio of 2:1 and formed quantitatively at ∼1011 l2/mol2 for the TMeQ[6]-M6 and TMeQ[6]-O6 systems. The transformation from dumbbell to pseudorotaxane-shaped inclusion complexes for the TMeQ[6]-P6 and TMeQ[6]-M6 host–guest systems yielded activation energies of 59.35 ± 1.55 and 78.7 ± 3.45 kJ/mol, respectively. The pseudorotaxane-shaped inclusion complexes were stable at pH 5.6, had a host–guest ratio of 1:1 and formed quantitatively at ∼107 l/mol for the TMeQ[6]-M6 and TMeQ[6]-P6 systems.

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (No. 20662003 and 20961002), the International Collaborative Project of Guizhou Province (No 2007400108) and the Foundation of the Governor of Guizhou Province.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.