110
Views
0
CrossRef citations to date
0
Altmetric
Articles

Rigidity versus amphiphilicity in transmembrane nanopore formation by cholate-based macrocycles

&
Pages 302-311 | Received 05 Jun 2013, Accepted 03 Dec 2013, Published online: 05 Feb 2014
 

Abstract

Amphiphilic macrocycles consisting of cholates and l-tryptophan were prepared by the copper-catalysed alkyne–azide cycloaddition. The macrocycles helped glucose permeate lipid bilayer membranes. The macrocycle with two cholates was significantly more active in the glucose transport than the one with three cholates. Inclusion of 30–50% cholesterol in the bilayer accelerated the glucose transport monotonously. The unusual cholesterol effect was explained by the hydrophobically driven pore formation, in which the associative interactions of the water molecules inside the macrocycles prompted the macrocycles to stack over one another to avoid unfavourable water–lipid hydrocarbon contact. Fluorescence quenching by water- and oil-soluble quenchers provided additional evidence for the better penetration of the dicholate macrocycle into the bilayers, consistent with the stacking model. Rigidity in the macrocycle structure was hypothesised to be the main reason for the higher transport activity and deeper membrane-penetration of the dicholate macrocycle compared with those of the tricholate.

Additional information

Funding

We thank NSF (DMR-1005515) for supporting the research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.