97
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Biodistribution characteristics of mannosylated and fucosylated O/W emulsions in mice

, , , &
Pages 479-487 | Published online: 08 Oct 2008
 

Abstract

Cell-specific drug delivery is one of the most promising strategies for improving therapeutic efficiency and minimizing systemic toxicity. Carrier systems devoted to receptor-mediated targeting need to be developed. In the case of liver-non-parenchymal cell-specific targeting systems, glycosylated emulsions have been developed as carriers for lipophilic drugs and/or peptides. This present study demonstrates the in vivo disposition behaviour and pharmacokinetic characteristics of mannosylated (Man-) and fucosylated (Fuc-) emulsions incorporated with cholesten-5-yloxy-N-(4-((1-imino-2-d-thiomannosylethyl)amino)alkyl)formamide (Man-C4-Chol) and its fucosylated derivatives (Fuc-C4-Chol), respectively. Man- (or Fuc-) emulsions are composed of soybean oil, EggPC and Man-C4-Chol (or Fuc-C4-Chol) in a weight ratio of 70:25:5. After intravenous administration to mice, these two types of [3H]cholesteryl hexadecyl ether (CHE)-labelled glycosylated emulsions were rapidly eliminated from the blood circulation and preferentially recovered in the liver. In contrast, bare (Bare-) emulsions composed of soybean oil:EggPC:cholesterol (Chol) in a weight ratio of 70:25:5 were more retained in the blood circulation. The hepatic uptake clearances of Man- and Fuc-emulsions were 3.3- and 4.0-times greater than that of Bare-emulsions. Interestingly, the hepatic uptake clearance of Fuc-emulsions was significantly higher that that of Man-emulsions. The uptake ratios by non-parenchymal cells (NPC) and parenchymal cells (PC) (NPC/PC ratio) for Bare-, Man- and Fuc-emulsions were found to be 0.4, 2.0 and 2.9, respectively. The hepatic uptakes of [3H]CHE-labelled Man- and Fuc-emulsions were reduced by pre-dosing with glycosylated proteins and liposomes. These results clearly support the conclusion that Man- and Fuc-emulsions are promising carrier systems for liver NPC-specific targeting via receptor-mediated mechanism.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.