373
Views
61
CrossRef citations to date
0
Altmetric
Research Article

Cutaneous DNA delivery and gene expression in ex vivo human skin explants via wet-etch microfabricated microneedles

, , , , , , , & show all
Pages 415-421 | Received 09 Sep 2005, Accepted 22 Sep 2005, Published online: 08 Oct 2008
 

Abstract

Microneedle arrays increase skin permeability by forming channels through the outer physical barrier, without stimulating pain receptors populating the underlying dermis. It was postulated that microneedle arrays could facilitate transfer of DNA to human skin epidermis for cutaneous gene therapy applications. Platinum-coated “wet-etch” silicon microneedles were shown to be of appropriate dimensions to create microconduits, approximately 50 μm in diameter, extending through the stratum corneum (SC) and viable epidermis. Following optimisation of skin explant culturing techniques and confirmation of tissue viability, the ability of the microneedles to mediate gene expression was demonstrated using the β-galactosidase reporter gene. Preliminary studies confirmed localised delivery, cellular internalisation and subsequent gene expression of pDNA following microneedle disruption of skin. A combination of this innovative gene delivery platform and the ex vivo skin culture model will be further exploited to optimise cutaneous DNA delivery and address fundamental questions regarding gene expression in skin.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.