366
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Targeted delivery of levofloxacin-liposomes for the treatment of pulmonary inflammation

, , , , &
Pages 399-407 | Received 19 Nov 2008, Accepted 02 Feb 2009, Published online: 01 Jun 2009
 

Abstract

The present study systematically studied the intravenous injectable formulation of liposomes loaded with levofloxacin, an amphipathic antibiotic. The aim of the present study was to design passive targeting liposomes, which might improve the antibacterial activity by accumulating in lung and reduce side effects such as neurotoxicity and hematotoxicity associated with direct injection of the drug. Levofloxacin-loaded liposomes were prepared by the ammonium sulfate gradients method. The formulated liposomes were found to be relatively uniform in size (7.424 ± 0.689 μm) with a positive zeta potential (+13.11 ± 1.08 mV). The entrapment efficiency of levofloxacin-loaded liposomes ranged from 82.19% to 86.23%. The administered liposomes were composed of soybean phosphatides, cholesterol, levofloxacin, and sulfate which existed in inner liposomes. In vitro drug release was monitored for up to 3 days, and the release behavior was in accordance with the Weibull equation. The levofloxacin-loaded liposomes exhibited a longer elimination half-life (t1/2β) in vivo compared with the levofloxacin solution after intravenous injection to New Zealand rabbits. The encapsulation of levofloxacin in liposomes also changed its biodistribution in mice after intravenous injection in caudal vein. Liposomal levofloxacin performed significant lung targeting efficiency with area under the concentration–time curve, targeting efficacy (Te), and The intake rate (Re) of lung, all showing obvious increase. In addition, liposomal formulations presented accumulative activity in spleen and liver. Conversely, the biodistribution of liposomal formulation in non-RES sites, such as kidney, brain, heart, and plasma, decreased with descending peak concentration ration (Ce) compared to levofloxacin injection, which potentially resulted in the reduction of the side effects of free drug. These results indicated that the levofloxacin-loaded liposomes were promising passive targeting to lung for pulmonary infection treatment.

Acknowledgments

Declaration of interest: The authors report no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.