537
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in targeting mTOR signaling pathway using small molecule inhibitors

&
Pages 189-201 | Received 02 Jun 2016, Accepted 05 Sep 2016, Published online: 03 Oct 2016
 

Abstract

Targeted-based cancer therapy (TBCT) or personalized medicine is one of the main treatment modalities for cancer that has been developed to decrease the undesirable effects of chemotherapy. Targeted therapy inhibits the growth of tumor cells by interrupting with particular molecules required for tumorigenesis and proliferation of tumor cells rather than interfering with dividing normal cells. Therefore, targeted therapies are anticipated to be more efficient than former tumor treatment agents with minimal side effects on non-tumor cells. Small molecule inhibitors (SMIs) are currently one of the most investigated anti-tumor agents of TBCT. These small organic agents target several vital molecules involved in cell biological processes and induce target cells apoptosis and necrosis. Mechanistic (mammalian) target of rapamycin (mTOR) complexes (mTORC1/2) control different intracellular processes, including growth, proliferation, angiogenesis and metabolism. Signaling pathways, in which mTOR complexes are involved in are usually dysregulated in various tumors and have been shown to be ideal targets for SMIs. Currently, different mTOR-SMIs are in the clinic for the treatment of cancer patients, and several others are in preclinical or clinical settings. In this review, we summarize recent advances in developing different mTOR inhibitors, which are currently in preclinical and clinical investigations or have been approved for cancer treatment.

Disclosure statement

The authors have no relevant affiliation or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.