181
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dual functional liposomes carrying antioxidants against tau hyperphosphorylation and apoptosis of neurons

, &
Pages 949-960 | Received 16 Oct 2019, Accepted 24 Apr 2020, Published online: 12 May 2020
 

Abstract

Quercetin (QU) and rosmarinic acid (RA) were loaded in phosphatidic acid-liposomes (QU/RA-PA-liposomes) with surface apolipoprotein E (ApoE) using a process of thin-film hydration, followed by covalent crosslinking to activate biological pathways for penetrating the blood–brain barrier (BBB) and redeeming the neuronal apoptosis from attack of β-amyloid 1-42 (Aβ1-42) and neurofibrillary tangles. The conjugation of liposomes with PA improved the activity of QU and RA against neurotoxicity of Aβ1-42. The fluorescent images of brain capillaries revealed that surface modification with ApoE improved the permeation ability of QU/RA-PA-ApoE-liposomes across the BBB. In addition, the highest therapeutic efficacy was obtained in the case of QU/RA-PA-ApoE-liposomes, compared to other QU/RA formulations studied using in vivo1-42-insulted rats mimicking Alzheimer’s disease (AD). The cellular and molecular evidence from AD rats included the decrease in Aβ1-42 plaque formation and interleukin-6 secretion, increase in the neuronal count in Nissl staining, and reduction in the expression of phosphorylated extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, p38 kinase and tau protein at serine 202 as well as caspase-3. The use of PA-ApoE-liposomes as a dual targeting formulation enhances the QU and RA ability to infiltrate the BBB, docks Aβ1-42 plaques and can be a potent approach to rescue degenerated neurons from AD.

Disclosure statement

The authors report no declarations of interest.

Supporting information

Details of staining against α-smooth muscle, LDLR, ZO-1, p-JNK, p-ERK1/2, p-p38, caspase-3, live/dead cells, Aβ1-42 plaque and Nissl body.

Additional information

Funding

This work is supported by Ministry of Science and Technology of the Republic of China with the grant number MOST 103-2221-E-194-043-MY3 and MOST 106-2811-E-194-002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.